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Abstract. In this paper, we study the formation of solitons, their propagation and collision
behaviour in an integrable multicomponent (2+1)-dimensional long wave–short wave resonance
interaction (M-LSRI) system. First, we briefly revisit the earlier results on the dynamics of bright
solitons and demonstrate the fascinating energy exchange collision of bright solitons appearing in
the short-wave components of the M-LSRI system. Then, we explicitly construct the exact one-
and two-multicomponent dark soliton solutions of the M-LSRI system by using the Hirota’s direct
method and explore its propagation dynamics. Also, we study the features of dark soliton collisions.
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1. Introduction

Nonlinear waves appearing in multicomponent nonlinear evolution equations governing
the dynamics of various interesting physical systems display intriguing propagation and
collision properties. The nonlinear waves, mainly solitons, which arise as the solutions
of integrable nonlinear equations show interesting collision features due to their remark-
able stability property and find innumerable applications in different areas of science and
technology [1]. Particularly, higher-dimensional multicomponent systems admit various
localized structures like solitons, vortex solitons, dromions, and so on. These multi-
component higher-dimensional solitons (HDSs) have attracted our interest to pursue a
systematic study on their propagation and intriguing collision dynamics which will be
of physical significance in different contexts of nonlinear science. In order to unearth
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the features of HDS, in this study we consider the following set of integrable non-
linear evolution equations describing the resonance interaction of multiple short waves
(SWs) of high frequency with a long wave (LW) of low frequency, which is referred
to as (2 + 1)-dimensional multicomponent long wave–short wave resonance interaction
(M-LSRI) system,

i(S
(�)
t + S(�)

y ) − S(�)
xx + LS(�) = 0, � = 1, 2, 3, ...,M, (1a)

Lt = 2
M∑

�=1

|S(�)|2x, (1b)

where S(�) represents the �th SW, L indicates the LW and the subscripts represent the
partial derivatives with respect to the evolutional coordinate t and the spatial coordinates
(x and y). In the above (2+1)D M-LSRI system, ‘2’ stands for the two spatial dimensions
(x and y), ‘1’ stands for the evolutional coordinate t and M represents the number of SW
components of the system.

The resonance interaction of long wave and short waves takes place when there occurs
an exact (approximate) balance between the phase velocity of a LW (vp) and the group
velocity of multiple SWs (vg), i.e., vp � vg [2–5]. Such LSRI phenomenon in different
types of one- and two-dimensional nonlinear systems has been analysed extensively in
the literature (for a detailed information, see [6–15] and references therein). The above-
mentioned (2+1)D M-LSRI system (1) is one such model which supports several interesting
dynamical features. In the context of nonlinear optics, system (1) can be derived from
a set of two-dimensional multiple coupled nonlinear Schrödinger-type equations, when
long wave–short wave resonance takes place [6,7].

To highlight the historical perspectives of the considered system, we wish to point out
that the simplest form of (1) i.e., the one-component (M = 1) two-dimensional LSRI
system has been obtained by using a perturbation method in a two-layer fluid model and
soliton solutions were constructed by applying the Hirota method [8]. Later, in [9], special
bright multisoliton solutions in Wronskian form were obtained for the two-component
(M = 2) LSRI system and the Painlevé integrability analysis of that two-component LSRI
equation was carried out in [10] with special dromion solutions. The more general bright
multisoliton solution of the (2+1)D M-LSRI system (1) was obtained in [11] and fascina-
ting energy sharing (shape changing) collision of bright solitons has been explored. Also,
the propagation and collision dynamics of bright multisoliton bound states and mixed
(bright–dark) solitons of system (1) have been discussed in [12] and [13], respectively.
Recently, new integrable generalizations of the M-LSRI system (1) in (1+1)D, referred
to as M-Yajima–Oikawa system, and in (2+1)D have been reported in [14] and [15],
respectively.

The objective of this paper is to showcase the dynamics of bright and dark solitons of
the M-LSRI system. We obtain the bilinear equations of the M-LSRI system (1) by using
the Hirota’s direct method in §2. In §3, we revisit the earlier studies on the dynamics of
bright multisoliton of system (1). Then, we construct the one- and two-dark soliton solu-
tions of the M-LSRI system (1) and explore its collision dynamics in §4. We summarize
the main results in §5.
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2. Bilinear equations of the M-LSRI system (1)

Hirota’s bilinearization method [16] is one of the most efficient analytical tools to con-
struct soliton solutions of integrable nonlinear evolution equations due to its algebraic
nature. In this section, to obtain the soliton solutions of the M-LSRI system (1) by apply-
ing the Hirota’s method, we transform the nonlinear equations (1) into a set of bilinear
equations using the following transformation:

S(�) = g(�)

f
, � = 1, 2, ...,M, (2a)

L = −2
∂2

∂x2
(ln f ), (2b)

where g(�) and f are arbitrary complex and real functions of x, y and t , respectively. Then
we can write eqs (1) as a set of bilinear equations:

(
i(Dt + Dy) − D2

x

)
g(�) · f = 0, � = 1, 2, 3, ...,M, (3a)

(DxDt − 2λ)f · f = −2
M∑

�=1

∣∣g(�)
∣∣2

. (3b)

In eqs (3), λ is an unknown constant to be determined, Dx , Dy and Dt are the standard
Hirota’s D-operators [16]. For λ = 0, eqs (3) admit bright soliton solutions with zero
background, while for the general case (λ �= 0) eqs (3) can exhibit bright–dark and dark–
dark soliton solutions. In this paper, we briefly revisit some interesting results of our
earlier study on the propagation and collision dynamics of bright multisolitons [11]. Then
we construct the dark soliton solutions of the M-LSRI system (1) and investigate their
dynamics in detail.

3. Bright multisoliton solution and collision dynamics: An overview

We have obtained the explicit form of more general bright n-soliton solution, for arbi-
trary n, by applying the Hirota’s method (see [11]). For this purpose, the power series
expansion of variables g(�) and f are expressed as

g(�) =
n∑

j=1

χ2j−1g
(�)

2j−1, � = 1, 2, ...,M

and

f = 1 +
n∑

j=1

χ2j f2j ,

respectively. On substituting g(�) and f in the bilinear eqs (3) and solving the resulting
equations arising at different powers of χ , we get the exact expression for g(�) and f in
the form of Gram determinants as

g(�) =
∣∣∣∣∣∣

A I φ

−I B 0T

0 a� 0

∣∣∣∣∣∣
, f =

∣∣∣∣
A I

−I B

∣∣∣∣ . (4a)
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Then from eqs (2) and (4a), the bright n-soliton solution can be written as

S(�) = g(�)

f
, � = 1, 2, ...,M (4b)

and
L = −2

∂2

∂x2
(ln f ). (4c)

In eq. (4a), I and 0 represent identity matrix and null matrix of dimensions (n × n) and
(1 × n), respectively, A and B are square matrices of dimension (n × n) with elements

Aij = eηi+η∗
j

ki + k∗
j

,

Bij =κji = −ψ
†
i ψj

(ω∗
i + ωj )

≡ − ∑M
�=1 α

(�)
j α

(�)∗
i

(ω∗
i + ωj )

, i, j =1, 2, . . . , n, (4d)

a�, ψj and φ are block-matrices of dimensions (1×M), (M ×1) and (n×1), respectively,
with elements

a� = −
(
α

(�)

1 , α
(�)

2 , . . . , α(�)
n

)
, ψj =

(
α

(1)
j , α

(2)
j , . . . , α

(M)
j

)T

and

φ = (eη1 , eη2 , . . . , eηn)
T

,

where

ηj = kjx − (ik2
j + ωj )y + ωj t, j = 1, 2, . . . , n, � = 1, 2, 3, ...,M.

Here kj , ωj and α
(�)
j , j = 1, 2, . . . , n, � = 1, 2, . . . ,M , are arbitrary complex parameters.

The symbols † and T appearing in the superscript indicate the transpose conjugate and
transpose of the matrix, respectively, while M and n represent the component number and
soliton number, respectively. The proof for the above bright n-soliton solution (4) can be
obtained by verifying that the bilinear equations (3) satisfy the Jacobi identity [11]. One
can also ascertain the integrability of the system by the existence of n-soliton solution,
with arbitrary n.

3.1 Bright one-soliton solution

Here, we write the explicit form of bright one-soliton solution of the M-LSRI system (1),
resulting for the choice n = 1 in eq. (4), as follows:

S(�) = A�

√
k1Rω1R sech

(
η1R + R

2

)
ei(η1I + π

2 ), � = 1, 2, ...,M, (5a)

L = −2k2
1Rsech2

(
η1R + R

2

)
, (5b)
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where

A� =α
(�)

1

(
M∑

�=1

|α(�)

1 |2
)−1/2

,

eR = − ∑M
�=1 |α(�)

1 |2
4k1Rω1R

, η1R =k1Rx + (2k1Rk1I − ω1R)y + ω1Rt

and

η1I = k1Ix − (k2
1R − k2

1I + ω1I)y + ω1It .

In eq. (5), the subscript R (I) appearing in a particular complex parameter denotes the
real (imaginary) part of that complex parameter. The above bright one-soliton solution
is characterized by (M + 2) arbitrary complex parameters (α(�)

1 , � = 1, 2, ...,M , k1 and
ω1) and it becomes singular (non-singular) for eR < 0 (eR > 0). So, one can obtain
the regular solitons when the condition eR > 0 is satisfied, which restricts one of the
parameters among k1R and ω1R to be negative while the other takes positive values.

The amplitude (peak value) of soliton in the LW component (L) is 2k2
1R and that of

the �th SW component (S(�), � = 1, 2, ...,M) is A�

√
k1Rω1R. As the amplitude of the

soliton in the LW component is independent of α
(�)
1 and ω1 parameters, one can control

the soliton in the SW component by tuning these parameters without affecting the soliton
in the LW component. Soliton of the present (2+1)D M-LSRI system can propagate in
two planes, namely (x–y) and (x–t) planes with different velocities ((ω1R/k1R) − 2k1I)

and −(ω1R/k1R), respectively, for fixed t and y. By tuning the k1I parameter one can
alter the velocity of propagating bright soliton in the (x–y) plane without affecting the

Figure 1. Propagation of bright one-soliton of the 2-LSRI system in the (x–y) plane
for t = 1 (a) and in the (x–t) plane for y = 1 (b).
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soliton velocity in the (x–t) plane. We have shown the propagation of bright one-soliton
of 2-LSRI system in figure 1 for k1 = 1.5 + 0.3i, ω1 = −1 − 2i, α(1)

1 = 1 and α
(2)

1 = 1.5.

3.2 Bright two-soliton solutions and their collisions

Bright multisolitons of the present system show interesting collision properties with
energy sharing (energy-exchange or shape-changing) phenomenon, similar to the vector
solitons in multicomponent Manakov system, coupled Gross–Pitaevskii equations, etc.
[17–23]. In order to understand this clearly, we consider the simple case of n-soliton
solution, i.e., two-soliton solution (n = 2 in eq. (4)) of eq. (1) and analyse its dynamics.
As the solitons in the present (2+1)D M-LSRI system admit different velocities in the
(x–y) and (x–t) planes, they show different collision characteristics in those planes.
Particularly, the solitons can undergo both head-on and overtaking collisions in the (x–y)
plane for different soliton parameters. As the condition for non-singular solution restricts
the velocity of solitons ((ω1R/k1R) and(ω2R/k2R)) to be either positive or negative simul-
taneously, the solitons can undergo only overtaking collisions in the (x–t) plane. The
bright solitons appearing in both components of the 1-LSRI system (1SW and 1LW)
exhibit only elastic collision. However, they undergo energy sharing collisions if there
are two or more SW components, i.e., M-LSRI system with M ≥ 2.

From a detailed asymptotic analysis [11], change in the amplitude of a given j th soliton
after collision in the �th SW component (A(�)+

j ) can be related to the amplitude of that

soliton before collision (A(�)−
j ) in terms of the transition amplitudes (T (�)

j ) as

A
(�)+
j = T

(�)
j A

(�)−
j , j = 1, 2, � = 1, 2, ...,M, (6)

where

T
(�)

1 = 1 − λ1√
1 − λ1λ2

(
(k1 − k2)(k2 + k∗

1)

(k∗
1 − k∗

2)(k
∗
2 + k1)

)1/2

and

T
(�)

2 =
√

1 − λ1λ2

1 − λ2

(
(k2 + k∗

1)(k
∗
1 − k∗

2)

(k∗
2 + k1)(k1 − k2)

)1/2

,

in which

λ1 = α
(�)

2 κ12

α
(�)
1 κ22

and λ2 = α
(�)

1 κ21

α
(�)
2 κ11

,

where the form of κij , i, j = 1, 2, is as given in eq. (4c) for n = 2. The solitons undergo
elastic collision for a special choice of soliton parameters (α(�)

j , j = 1, 2, � = 1, 2, ...,M)
satisfying the condition

α
(1)

1

α
(1)

2

= α
(2)

1

α
(2)

2

= · · · = α
(M)

1

α
(M)

2

,

for which T
(�)
j become unimodular, i.e., |T (�)

j |2 = 1. However, the solitons appearing in

the LW component undergo only elastic collision for all the choices of α
(�)

j . Additionally,
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Figure 2. Energy sharing collision of two bright solitons in the 2-LSRI system. Head-
on collision of solitons in the (x–y) plane at t = 1 (a) and overtaking collision of
solitons in the (x–t) plane at y = 1 (b).

the soliton (say sj , j = 1, 2) appearing in all the components experiences a phase-shift
(j ) given by

1 = ln

(√
1 − λ1λ2

∣∣∣∣
k1 − k2

k1 + k∗
2

∣∣∣∣

)
≡ −2.

The energy sharing collision scenario of two bright solitons is shown in figure 2 for
k1 = 1 + 0.3i, k2 = 1.5 − i, ω1 = −1 − i, ω2 = −0.5 − 0.5i, α

(1)

1 = 2, α
(1)

2 = 1,
α

(2)

1 = 1, α
(2)

2 = 0.08. In the (x–y) plane, the amplitude of soliton s1 (s2) is enhanced
(suppressed) in S(1) while the amplitude of soliton s1 (s2) gets suppressed (enhanced) in
S(2). The switching nature of soliton intensity (energy) in the (x–t) plane is opposite
to the switching phenomenon in the (x–y) plane. However, in both (x–y) and (x–t)
planes, the LW solitons emerge unaltered after collision except for a phase-shift.

4. Dark solitons

As noted in §2, dark soliton solutions of the M-LSRI system (1) result for the choice
λ �= 0 in the bilinear eqs (3). In the following, we obtain the dark one- and two-soliton
solutions of system (1) by applying the Hirota’s bilinearization method [24–26].

4.1 Dark one-soliton solution

To construct the dark one-soliton solution, we choose the form of g(�) and f as g(�) =
g

(�)

0 (1 + χ2g
(�)

2 ), � = 1, 2, ...,M , and f = 1 + χ2f2. By substituting these expressions
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in the bilinear equations (3) and recursively solving the resulting set of equations, we get
the explicit expressions for g(�) and f as g(�) = τ�(1 + μ

(�)

1 eη1)eiψ� , � = 1, 2, ...,M , and
f = 1 + eη1 . Hence from eq. (2), the dark one-soliton solution can be written as

S(�) = τ�

2

[
(1 + μ

(�)
1 ) − (1 − μ

(�)
1 ) tanh(η1/2)

]
eiψ� , � = 1, 2, ...,M, (7a)

L = −k2
1

2
sech2(η1/2), (7b)

where

η1 = k1x + p1y + ω1t, ψ� = a�x + b�y + c�t,

λ =
M∑

�=1

|τ�|2

and

μ
(�)

1 = 2a�k1 − p1 − ω1 + ik2
1

2a�k1 − p1 − ω1 − ik2
1

.

Here a�, b�, c�, k1, p1 and ω1 are real parameters, while τ� are complex parameters and
they should satisfy the relation

4k3
1

ω1

M∑

�=1

|τ�|2
(2a�k1 − p1 − ω1)2 + k4

1

= 1

and c� = a2
� − b�, � = 1, 2, ...,M . The dark one-soliton solution (7) is characterized by

(4M + 2) arbitrary real parameters.
The absolute square of the SW solutions and the absolute of the LW solution given by

the above equation (7) can be written in a compact form as

|S(�)|2 = |τ�|2
[
1 − A� sech2(η1/2)

]
, � = 1, 2, ...,M, (8a)

|L| = k2
1

2
sech2, (8b)

where

A� = k4
1

(2a�k1 − p1 − ω1)2 + k4
1

determines the degree of darkness of dark soliton in the �th SW component and |τ�|2
represents its background intensity. Depending upon the values of A�, one can get the dark
and gray solitons in the SW components, i.e., A� = 1 and A� < 1 result in dark and gray
solitons, respectively. On the other hand, the LW component always results in bright soli-
ton with amplitude k2

1/2, irrespective of other soliton parameters. The velocity of soliton
(bright in LW and dark in SW) is −p1/k1 in the (x–y) plane and −ω1/k1 in the (x–t)
plane. So the directions of soliton propagation (velocities) in both planes can be made
different by controlling these quantities. We have shown a typical dark (bright) soliton
propagation appearing in the SW (LW) component of the 2-LSRI system in figure 3 for
k1 = 4, p1 = −2, a1 = 1, a2 = 1.2, b1 = 1.1, b2 = 1.3, τ1 = 2 and τ2 = 1.
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Figure 3. Propagation of dark one-soliton in 2-LSRI system in (x–y) plane for t = 1
(a) and in (x–t) plane for y = 1 (b).

4.2 Dark two-soliton solutions and their collisions

The dark two-soliton solution can be constructed by restricting the power series expan-
sions for g(�) and f as g(�) = g

(�)
0 (1 + χ2g

(�)
2 + χ4g

(�)
4 ), � = 1, 2, ...,M , and f =

1 + χ2f2 + χ4f4. The explicit forms of g(�) and f can be obtained as

g(�) = τ�

(
1 + μ

(�)

1 eη1 + μ
(�)

2 eη2 + μ
(�)

1 μ
(�)

2 �eη1+η2

)
eiψ� , � = 1, 2, ...,M,

(9a)

f = 1 + eη1 + eη2 + �eη1+η2 , (9b)

where

ηj = kjx + pjy + ωj t, ψ� = a�x + b�y + c�t,

λ =
M∑

�=1

|τ�|2, μ
(�)
j = 2a�kj −pj −ωj + ik2

j

2a�kj −pj −ωj − ik2
j

, j = 1, 2, �=1, 2, ...,M

and

� = k2
1k

2
2(k1 − k2)

2 + (k1(p2 + ω2) − k2(p1 + ω1))
2

k2
1k

2
2(k1 + k2)2 + (k1(p2 + ω2) − k2(p1 + ω1))2

.

The above two-soliton solution is characterized by (3M + 6) real parameters a�, b�, c�,
kj , pj and ωj , and M complex parameters τ�, with (M + 2) relations

c� = a2
� − b�, � = 1, 2, ...,M
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and

2

ωjkj

M∑

�=1

|τ�|2
(

1 − Re[μ(�)

j ]
)

= 1, j = 1, 2.

Hence there are only (4M + 4) number of arbitrary real constants. The velocities and
darkness (amplitude) of dark (bright) solitons appearing in the SW (LW) components can
be controlled by tuning these arbitrary parameters.

The collision dynamics of dark solitons can be explored by performing an asymptotic
analysis, as was done for the bright soliton collision process, which we have not discussed in
this paper here on considering the length of the article. From the asymptotic analysis, we
find that the dark solitons appearing in the SW components undergo only elastic collision
for all choices of soliton parameters, in contrast to the energy sharing collision of bright
solitons in the SW components. Also, the bright solitons appearing in the LW components
exhibit the usual elastic collision. But these colliding solitons experience phase-shift. By
tuning the soliton parameters, one can demonstrate that the collision among two dark/gray
solitons or collision between a dark and a gray solitons in the SW components is elastic.
Thus, irrespective of the nature of dark-soliton profile (either dark or gray) their ampli-
tudes (intensities) remain unaltered after collision. Such an elastic collision of solitons
(a dark and gray solitons in SW component and two bright solitons in the LW component)
of the 2-LSRI system is given in figure 4 for k1 = 1.5, k2 = 2.5, p1 = −1.6, p2 = 2.6,

Figure 4. Elastic collision of bright (dark–gray) solitons in the LW (SW) compo-
nent(s) of 2-LSRI system in the (x–y) plane at t = 0.25 (a) and in the (x–t) plane at
y = −0.25 (b).
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Figure 5. Elastic collision of dark–dark, dark–gray and bright–bright solitons in the
S(1), S(2) and L components of the 2-LSRI system in the (x–y) plane for k1 = 3.5,
k2 = 3.5, p1 = −1.6 and p2 = 1.6, with other parameters same as in figure 4.

a1 = 1, a2 = 1.2, b1 = 1.1, b2 = 1.3, τ1 = 2 and τ2 = 1. Also, in figure 5 we have
shown the elastic collision of dark–dark (S(1)-component), dark–gray (S(2)-component)
and bright–bright (L-component) solitons of the 2-LSRI system.

Through dark–dark soliton collision process, one can form a bound state for the same
velocity dark solitons with coinciding (different) central position(s) resulting in single
(double) well type structures which propagate like a single soliton (parallel solitons).
Also, we wish to emphasize that these dark soliton bound states do not admit periodic
oscillations as in the case of bright/bright–dark solitons [12,13]. This procedure can be
generalized to construct the dark multisoliton solution in a straightforward manner which
involve very lengthy and tedious calculations, and the details will be presented elsewhere.

5. Conclusions

We have considered an integrable multicomponent long wave–short wave resonance
interaction (M-LSRI) equation governing the dynamics of nonlinear interaction between
multiple (M) short waves and a long wave in the context of nonlinear optics. To unravel
the interesting propagation dynamics of multicomponent plane solitons we have con-
structed soliton solutions by using the Hirota’s bilinearization method. We have briefly
revisited the earlier results on the bright multisoliton solution and demonstrated the fas-
cinating propagation dynamics and collision processes. Particularly, we have shown that
the amplitude of bright soliton appearing in the short-wave components can be controlled
by tuning the polarization parameters without affecting the amplitude of soliton appear-
ing in the long-wave component. From the collision dynamics of solitons in the M-LSRI
system, we have identified the interesting energy sharing collision of bright solitons in
the short-wave components when M ≥ 2. The solitons in the short-wave component
(for special choices of polarization parameters) can also undergo elastic collision accom-
panied by a phase-shift. From the dark one-soliton solution, we have observed that the
nature of soliton profile (dark or gray) in the short-wave component can be controlled
by tuning the soliton parameters, whereas the long-wave component supports only bright
solitons. Analysis on the dark two-soliton solution reveals that the dark solitons always
exhibit only elastic collisions with a phase-shift. Also, a collision between two dark/gray
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solitons or a collision between dark and gray solitons is also shown to be elastic. As a
future study, one can construct the dark multisoliton solution by generalizing the present
algorithm and investigate the underlying dynamics.
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