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Abstract—We have obtained the bright one- and two-soliton solutions of the two-component general-
coupled nonlinear Schrödinger equations by using the Hirota’s bilinearization method. By studying the 
collision dynamics, we have pointed out that these bright solitons undergo two types of interesting shape 
changing collisions characterized by the energy redistribution and amplitude dependent phase-shifts which 
is not possible in their single component counterpart in addition to elastic collision and bound states. 
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1. INTRODUCTION 
 

Multicomponent soliton formation and their collision dynamics in nonlinear media is one of 
the main emphases of current research. The multifaceted applications of these multicomponent 
solitons make them as potential candidates for various physical processes in diverse areas of 
science [1, 2]. In the context of nonlinear optics, the multicomponent solitons are formed in 
optical fibers due to interplay between the dispersion/diffraction and nonlinear effects. In general 
cases like pico-second pulse propagation in non-ideal low birefringent multimode fibers or beam 
propagation in weakly anisotropic Kerr-type nonlinear media, the coherent nonlinear effects due 
to the interaction of co-propagating fields should also be considered in addition to the self-phase 
modulation and cross-phase modulation effects. Mathematically, optical soliton propagation in 
Kerr type nonlinear media can be well described within the framework of multicomponent 
nonlinear Schrödinger (NLS) equations. Although these equations are non-integrable in general 
they turn out to be integrable for specific choices of nonlinearity parameters [3–5]. 
 

This paper deals with the following integrable general-coupled nonlinear Schrödinger 
equations (g-CNLS) [5], 

 
     

(1) 
 
arising in the context of pulse/beam propagation in nonlinear media. In eqn. (1) “z” and “t” are 
the propagation direction and retarded time respectively, and are slowly varying complex 
amplitudes in each polarization mode. Here a, c and b are the coefficients of self-phase modulation 
(SPM), cross-phase modulation (XPM) and four-wave mixing terms, respectively. The nonlinearity 
coefficients a and c are real while b is a complex parameter. The above system admits the 
following Lax pair and is shown to be integrable by inverse scattering transform (IST) method [5]. 

  
 
 
 
 

 and l is a spectral parameter. In where 
the absence of coherent coupling terms (i.e., four-wave mixing terms) the above system has been 
studied in [6–12] and different kinds of novel shape changing collisions of solitons characterized 
by the intensity redistribution, amplitude dependent phase shift and change in relative separation 
distance has been identified. This collision behaviour can be profitably used in soliton collision 
based optical computing and in soliton amplification. 
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Soliton Collision Dynamics in the General Coupled Nonlinear Schrödinger System 

Now it is of natural interest to investigate whether the shape changing collision still persists 
in the g-CNLS system (1) and if so how it is influenced by the coherent coupling term. To answer 
these questions, in this work, we have obtained the bright one- and two-soliton solutions by using 
the Hirota’s bilinearization method and different types of soliton collision dynamics have been 
explored with the aid of the obtained solutions. 

 

This paper is arranged in the following manner. In section 2 we obtain the bilinear 
equations of system (1) and the bright one- and two-soliton solutions are obtained in section 3. 
In section 4, three types of two-soliton collisions are discussed in addition to soliton bound states. 
Final section is devoted for conclusions. 
 
2. HIROTA’S BILINEARIZATION METHOD 

Hirota’s bilinearization method [13] is one of the powerful tools to obtain the soliton 
solutions of integrable nonlinear systems. In this section, we obtain the bilinear equations of 
system (1) by this method. By performing the rational transformation, 

       (2) 

to eqn. (1), we obtain the following set of bilinear equations. 
 

     (3) 

, 
 

where , , and are complex functions while  is a real function, and * 

denotes the complex conjugate. The Hirota’s bilinear operators  and are defined as [13] 
 

                   
(4) 

 
In order to solve the above set of bilinear equations (3), let us consider the following 

power series expansions for ,  and : 

        (5) 
 
where  is the formal expansion parameter. The resulting set of equations, after collecting the 
terms with the same power in , can be solved recursively to obtain the exact forms of , 
and . 

 
3. BRIGHT SOLITON SOLUTIONS 

In this section, we obtain the bright one– and two-soliton solutions by solving the above bilinear 
equations (3) recursively with help of power series expansion.  

 
3.1 Bright One-Soliton Solution 

To obtain the bright one-soliton solution of system (1) we restrict the power series 
expansion (5) as , , . By substituting this expansion into the bilinear 
equations (3) and recursively solving the resulting set of linear differential equations, we get the 
one-soliton solution as 
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(6) 

 
where   ,   

  , , 
   

 
The above one-soliton solution of system (1) is characterized by three arbitrary complex 

parameters , and . The amplitude of the soliton is -th component is , where . 

The speed and central position of the soliton is and , respectively. Such a bright one-

soliton of system (1) for the parameter choice and  is shown in Fig. 1.

 
 
3.2 Bright Two-Soliton Solution 

The bright two-soliton solution of system (1) can be obtained by terminating the power 
series expansion (5) as, and substituting this 
expressions into eqn.(3). After solving the resulting set of linear differential equations, we obtain 
the two-soliton solution as 

 
 (7) 

 
where   

     . 
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Fig. 1: Bright one-soliton solution of g-CNLS system (1) 
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Various quantities appearing in the above equation (7) are as below: 

  

 

 

 

and     

Here . The real and imaginary parts of  are given by 

and  The above two-soliton solution is characterized by six arbitrary 

complex parameters , and  

4. COLLISION OF SOLITONS 

The two-soliton solution obtained in the previous section can be utilized to describe the 
collision of two bright solitons in the general-CNLS system (1). The detailed asymptotic analysis 
of two-soliton collision reveals that there exists two types of shape-changing (or) energy-sharing 
collisions corresponding to two different choices of SPM and XPM coefficients (i) a,c>0 or a,c<0 
and (ii) a>0 & c<0 or a<0 & c>0 for arbitrary b values. In Fig. 2 we have shown the first type 
two-soliton collision for the parametric choices ,  

and . It can be observed that the collision scenario is intricate. 

During collision the soliton  undergoes an enhancement in its intensity while the soliton  

gets suppressed in the  component and the reverse scenario takes place in the  component. 
This type of shape changing collision behaviour is not possible in the single component NLS 
system. Another type of shape-changing collision of two-soliton is given in Fig. 3 for a=b=2 and 
c=-2 with other parameters fixed as in Fig. 2. Here a given soliton shows same type of energy 
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Fig. 2: Shape-changing collision of g-CNLS system (1) for a=c=b=2. 
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change in both components. Similar types of collision behaviour have also been observed in the 
Manakov system [8, 9] and in the mixed CNLS system [11, 12] in the absence of the phase 
dependent nonlinearity (b=0). The role of the phase dependent nonlinearities is to enhance the 
switching/sharing of intensities during collision. To facilitate the understanding, we present the 
soliton collision processes of the Manakov system in Fig. 4 for the same parameters but with b=0. 
The asymptotic analysis of the two soliton solution shows that the above shape-changing collisions 
are characterized by intensity redistribution among the solitons in both the components and 
amplitude dependent phase shifts resulting in the change in the relative separation distances 
between the solitons before and after collision. However the standard elastic collision with no 
alteration in the amplitudes of the colliding solitons, except for a phase-shift, occurs for the choice 

and is shown in Fig. 5 for the following choice of parameters ,  

. In addition to the above two-soliton collisions, one can 
obtain bound states among any number of solitons with same velocity/speed which can show 
either parallel propagation or breathing oscillations. 

 
5. CONCLUSION  

The bright one- and two-soliton solutions of the two-component general-coupled nonlinear 
Schrödinger equations are obtained by using the Hirota’s bilinearization method. We have 
identified two types of shape-changing collisions of bright solitons based on the SPM and XPM 
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Fig. 3: Shape-changing collision of g-CNLS system (1) for a=2, c=-2, and b=2. 

 

 
Fig. 4: Shape-changing collision of Manakov system (i.e. for a=c=2 and b=0 in system (1)). 
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coefficients. Also, we found that still in the presence of coherent coupling terms the physically 
important shape-changing collision of multicomponent solitons persists and is enhanced further 
in a significant manner due to the effects of such phase dependent nonlinearities. This will find 
important ramifications in soliton collision based optical computing and in soliton amplification. 
The standard elastic collisions of solitons can also be observed for specific choice of the polarization 
parameters. 
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Fig. 5: Standard elastic collision of g-CNLS system (1). 
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